DS1: L PROF: ATMANI NAJIB http://www.xriadiat.com 1er BAC Sciences Expérimentales BIOF Correction: Devoir surveillé n°1 sur les leçons suivantes: LA LOGIQUE ET Généralités sur les fonctions Durée : 2 heures Exercice1: (2pts): (1pt+1pt) On considère la proposition suivante : $P: (\forall x \in \mathbb{R}): x < 6 \Rightarrow x^2 < 36$ Ecrire la négation de P En utilisant un raisonnement par contre-exemple, Montrer que P est fausse. Solution: 1) On a: P: $(\forall x \in \mathbb{R}): x < 6 \Rightarrow x^2 < 36 \text{ alors}: \overline{P}; (\exists x \in \mathbb{R}): x < 6 \text{ et } x^2 \ge 36$ Car: $\overline{P_1 \Rightarrow P_2} \Leftrightarrow P_1 \text{ et } \overline{P_2}$ 2) On a: \overline{P} est vraie car $(\exists -7 \in \mathbb{R}): -7 < 6$ et $(-7)^2 = 49 \ge 36$ Par suite : P est une proposition fausse. (-7 est le contre-exemple) Exercice2: (2,5pts): Montrer par disjonction des cas : que pour tout $\forall n \in \mathbb{N}$; $n^3 - n$ est divisible par 3. **Solution**: Soit $n \in \mathbb{N}$: $n^3 - n = n(n^2 - 1) = n(n - 1)(n + 1)$ Il y'a trois façons d'écrire n: n=3k ou n=3k+1 ou n=3k+2 avec : $k \in \mathbb{N}$ Pour cela on va utiliser un raisonnement qui s'appelle raisonnement par disjonction des cas : **1ére cas**: si n=3k: $n^3-n=3k(3k-1)(3k+1)=3(k(3k-1)(3k+1))=3k'$ avec: $k'=k(3k-1)(3k+1)\in\mathbb{N}$ Donc: $n^3 - n$ est un multiple de 3 dans ce cas **2ére cas**: si n=3k+1: $n^3-n=(3k+1)(3k+1-1)(3k+1+1)$ =(3k+1)(3k)(3k+2)=3(k(3k+1)(3k+2))=3k' avec: $k'=k(3k+1)(3k+2)\in\mathbb{N}$ Donc: $n^3 - n$ est un multiple de 3 dans ce cas aussi 3ére cas : si n=3k+2 $n^3 - n = (3k+2)(3k+2-1)(3k+2+1) = (3k+2)(3k+1)(3k+3) = 3((k+1)(3k+1)(3k+2)) = 3k'$ Avec: $k' = (k+1)(3k+1)(3k+2) \in \mathbb{N}$ Donc: Le nombre: $n^3 - n$ est un multiple de 3 dans ce cas aussi. Par conséquent : selon le raisonnement par Disjonction des cas le nombre $n^3 - n$ est un multiple de 3 pour tout $n \in \mathbb{N}$. **Exercice3**: (2,5pts): Soit $n \in \mathbb{N}^*$; on pose a_n le nombre formé de n nombres égaux à 7 (C'est-à-dire : $a_n = \underbrace{77.....7}_{n \text{ fois } 7}$ par exemple : $a_1 = 7$ et $a_2 = 77$; $a_4 = 7777$) Montrer que : $\forall n \in \mathbb{N}^*$: $a_n = \frac{7}{9} (10^n - 1)$. **Solution**: Notons P(n) La proposition " $a_n = \underbrace{77.....7}_{n \text{ first}} = \frac{7}{9} (10^n - 1)$ " Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$. http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 1 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF 1étapes : l'initialisation : Pour n=1 nous avons $a_1 = 7$ et $\frac{7}{9}(10^1 - 1) = 7$ donc 7 = 7. Donc: P(1) est vraie. L'hérédité : 2étapes : Soit : $n \in \mathbb{N}^*$ Supposons que P(n) soit vraie c'est-à-dire : $a_n = \frac{7}{6} (10^n - 1)$ 3étapes : Nous allons montrer que P(n+1) est vraie. Montrons alors que : $a_{n+1} = \frac{7}{9} (10^{n+1} - 1)$?? On a : $a_{n+1} = 7 \times 10^n + \underbrace{77....7}_{n \text{ fois } 7} = 7 \times 10^n + a_n$ et on a d'après l'hypothèse de récurrence : $a_n = \frac{7}{6} \left(10^n - 1\right)$ Donc $a_{n+1} = 7 \times 10^n + \frac{7}{9} (10^n - 1) = \frac{7}{9} (9 \times 10^n + 10^n - 1) = \frac{7}{9} (10 \times 10^n - 1) = \frac{7}{9} (10^{n+1} - 1)$ C'est-à-dire : P(n+1) est vraie. Conclusion: Par le principe de récurrence on a : : $\forall n \in \mathbb{N}^*$: $a_n = \frac{7}{9}(10^n - 1)$. Exercice4: (3pts): (1pts+1pts+1pts) 1) Soit $a \in \mathbb{R}^+$ tel que : $\forall \varepsilon \succ 0 : a \prec \varepsilon$ Montrer que : a = 02) Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ tels que : $\forall \varepsilon \succ 0 : |a-b| \prec \varepsilon$ Montrer que : a = b3) Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ Montrer que : $a \le b \Leftrightarrow \forall \varepsilon \succ 0 : a \prec b + \varepsilon$ **Solution**:1) Soit $a \in \mathbb{R}^+$ tel que : $\forall \varepsilon \succ 0 : a \prec \varepsilon$ Montrons que : a = 0Supposons: $a \neq 0$ et comme: $a \in \mathbb{R}^+$ alors: $a \succ 0$ et puisque : $\forall \varepsilon \succ 0 : a \prec \varepsilon$ on prend : $\varepsilon = a \succ 0$ on aura donc : $a \prec a$ contradiction Donc: a = 02) Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ tels que : $\forall \varepsilon \succ 0 : |a-b| \prec \varepsilon$: Montrons que : a = bSupposons: $a \neq b$ alors: |a-b| > 0et puisque : $\forall \varepsilon \succ 0 : |a-b| \prec \varepsilon$ on prend : $\varepsilon = |a-b| \succ 0$ on aura donc : $|a-b| \prec |a-b|$ contradiction et donc : a = b3) Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ \Rightarrow) Montrons que : $a \le b \Rightarrow \forall \varepsilon \succ 0 : a \prec b + \varepsilon$? Supposons: $a \le b$ et Supposons $\exists \varepsilon \succ 0 / a \ge b + \varepsilon$ Alors: $\exists \varepsilon \succ 0/a - b \ge \varepsilon \succ 0$ Alors: $a-b \succ 0$ c'est-à-dire: $a \succ b$ contradiction avec $a \le b$ Donc: $a \le b \Rightarrow \forall \varepsilon \succ 0: a \prec b + \varepsilon$ \Leftarrow) Montrons que : $\forall \varepsilon \succ 0 : a \prec b + \varepsilon \Rightarrow a \leq b$? $\forall \varepsilon \succ 0: a \prec b + \varepsilon \Rightarrow \forall \varepsilon \succ 0: a - b \prec \varepsilon$ Supposons $a-b \succ 0$ on prend: $\varepsilon = a-b \succ 0$ et puisque: $\forall \varepsilon \succ 0 : a-b \prec \varepsilon$ alors $a-b \prec a-b$ contradiction. $\forall \varepsilon \succ 0: a \prec b + \varepsilon \Rightarrow a \leq b$ Conclusion: $a \le b \Leftrightarrow \forall \varepsilon \succ 0 : a \prec b + \varepsilon$ http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 2 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF Exercice5: (10pts): (1pt + 0.5pt + 1.5pt + 1pt + 1.5pt + 1pt + 1.5pt + 1pt + 1.5pt + 1pt)Soient f et g deux fonctions numériques définies par : $f(x) = x^2 - x$ et $g(x) = \sqrt{x}$ Dresser les tableaux de variations de f et g Soit : h la fonction numérique définie par : h(x) = (f ∘ g)(x) a) Déterminer D_k b) Etudier les variations de h sur $\left[0, \frac{1}{4} \mid \text{et } \left[\frac{1}{4}; +\infty\right]\right]$ c) Montrer que h admet un minimum absolu au point d'abscisse $\frac{1}{4}$ Soit: k la fonction numérique définie par: k(x) = (g ∘ f)(x) a) Déterminer D_k b) Etudier les variations de k c) Calculer $k(x) = (g \circ f)(x)$; $\forall x \in D_k$ 4)a) Tracer Les courbes représentatives (C_f) et (C_g) dans le même repère b) Résoudre graphiquement sur $[0;+\infty[$ l'inéquation : $\frac{g(x)}{f(x)} \le 1$ (On admet que (C_g) coupe (C_f) en 2 points d'abscisse : 0 et 1,75Solution: 1) Dressons les tableaux de variations de f et g a) $f(x) = x^2 - x$; $D_f = \mathbb{R}$: On a a = 1 > 0; b = -1 et c = 0 $(f(x) = ax^2 + bx + c)$ Donc $-\frac{b}{2a} = \frac{1}{2}$ et $\left(f\left(\frac{1}{2}\right) = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4} \right)$ Donc la courbe (C_f) c'est une parabole de sommet $S\left(\frac{1}{2}; -\frac{1}{4}\right)$ et d'axe de symétrie la droite $x = \frac{1}{2}$ f(x)b) $g(x) = \sqrt{x}$; $D_g = [0; +\infty[$ g(x)1)Soit : h la fonction numérique définie par : $h(x) = (f \circ g)(x)$ http://www.xriadiat.com/ PROF: ATMANI NAJIB 3 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF a) Déterminons D, $D_h = \{x \in \mathbb{R} \mid x \in D_g \text{ et } g(x) \in D_f \} = \{x \in \mathbb{R} \mid x \ge 0 \text{ et } g(x) \in \mathbb{R} \} = \{x \in \mathbb{R} \mid x \ge 0 \} = [0, +\infty[$ b) \rightarrow Etudions les variations de h sur : $\left[0, \frac{1}{4}\right]$ Puisque g est croissante sur $\left[0, \frac{1}{4}\right]$ et $g\left(\left[0,\frac{1}{4}\right]\right) = \left[0,\frac{1}{2}\right]$ et f est décroissante sur $\left[0,\frac{1}{2}\right]$ alors $h = f \circ g$ est décroissante sur $\left[0,\frac{1}{4}\right]$ \rightarrow Etudions les variations de h sur : $\left|\frac{1}{4}; +\infty\right|$ Puisque g est croissante sur $\left| \frac{1}{4}; +\infty \right|$ et $g\left(\left|\frac{1}{4};+\infty\right|\right) = \left|\frac{1}{2};+\infty\right|$ et f est croissante sur $\left[\frac{1}{2};+\infty\right]$ alors $h = f \circ g$ est croissante sur $\left[\frac{1}{4};+\infty\right]$ c) Montrons que h admet un minimum absolu au point d'abscisse $\frac{1}{4}$ C'est-à-dire Montrons que : $h(x) \le h\left(\frac{1}{4}\right)$; $\forall x \in [0; +\infty[$ $h\left(\frac{1}{4}\right) = (f \circ g)\left(\frac{1}{4}\right) = f\left(g\left(\frac{1}{4}\right)\right) = f\left(\frac{1}{2}\right) = -\frac{1}{4}$ Le tableau de variations de h : h(x)D'après le tableau de variations : h admet un minimum absolu au point d'abscisse $\frac{1}{4}$ C'est-à-dire on a $h(x) \ge h\left(\frac{1}{4}\right)$; $\forall x \in [0; +\infty[$ Donc: $h(x) \ge -\frac{1}{4}$; $\forall x \in [0; +\infty[$ 3) Soit : k la fonction numérique définie par : $k(x) = (g \circ f)(x)$ a) Déterminons $D_k: D_k = \{x \in \mathbb{R} \mid x \in D_f \text{ et } f(x) \in D_g\} = \{x \in \mathbb{R} \mid x \in \mathbb{R} \text{ et } f(x) \ge 0\}$ $f(x) \ge 0 \Leftrightarrow x^2 - x \ge 0 \Leftrightarrow x(x-1) \ge 0$ http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 4 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF $+\infty$ + $D_k =]-\infty;0] \cup [1;+\infty[$ b) Etudions les variations de $k: k(x) = (g \circ f)(x)$ →Etudions les variations de k sur :]-∞;0] Puisque f est décroissante sur]-∞;0] et $f(]-\infty;0]$ = $[0,+\infty[$ et g est croissante sur $[0,+\infty[$ alors $k=g\circ f$ est décroissante sur $]-\infty;0]$ →Etudions les variations de k sur : [1;+∞[Puisque f est croissante sur [1;+∞[et $f([1;+\infty[)=[0;+\infty[$ et g est croissante sur $[0;+\infty[$ alors $k=g\circ f$ est croissante sur $[1;+\infty[$ c) Calculons: $k(x) = (g \circ f)(x)$; $\forall x \in]-\infty; 0] \cup [1; +\infty[$ Soit $x \in]-\infty; 0] \cup [1; +\infty[: k(x) = (g \circ f)(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{x^2 - x}$ Donc: $k(x) = \sqrt{x^2 - x}$; $\forall x \in]-\infty; 0] \cup [1; +\infty[$ 4)a) Traçage des courbes représentatives (C_f) et (C_g) dans le même repère (C_f) A = (1.75, 1.32)http://www.xriadiat.com/ PROF: ATMANI NAJIB 5 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF b) Résolution graphique de l'inéquation : $\frac{g(x)}{f(x)} \le 1$ $D_E = \left\{ x \in \mathbb{R} \ / \ x \in [0; +\infty[\ \ et \ x^2 - x \neq 0] = \left\{ x \in \mathbb{R} \ / \ x \in [0; +\infty[\ \ et \ x \neq 0 \ \ et \ x \neq 1 \ \right\} = \left] 0; 1 \right[\cup \left] 1; +\infty[\ \ et \ x \neq 0 \ \$ Dans: $]0;1[\cup]1;+\infty[:f(x)>0]$ $\frac{g(x)}{f(x)} \le 1 \Leftrightarrow g(x) \le f(x)$ Graphiquement la courbe (C_f) est au-dessus de (C_g) si $x \in]0$; 1,75] Finalement: S = [0; 1,75]**PROF: ATMANI NAJIB** C'est en forgeant que l'on devient forgeron : Dit un proverbe C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

http://www.xriadiat.com/

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF